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PREFACE

The mathematical model investigation of Tallahala Creek Lake re-
ported herein was authorized by the Office, Chief of Engineers, U. S.
Army, on 19 August 197L at the request of the U. S. Army Engineer Dis-
triet, Mobile (SAM). An earlier investigation of Tallazhala (reek Lake
was completed in June 1973 and a letter report was forwarded to SAM.

The model study reported herein reflects various structural and opera-
tional changes in Tallahala Creek Lake not investigated in the earlier
study.

The investigation was conducted during the period April-November
1975 in the Hydraulics Laboratory of the U. 5. Army Engineer Waterways
Experiment Station {(WES), under the direction of Mr. H. B. Simmons,
Chief of the Hydraulics Laboratory, and Mr. J. L. Grace, Jr., Chief of
Structures Division, and under the supervision of Mr. J. P. Bohan, Chief
of the Spilliways and Channels Branch. The study was conductied by
Messrs. 5. T. Maynord and B. Loftis. This report was prepared by
Messrs., Maynocrd, Loftis, and D. G. Fontane.

Directors of WES during this study and the preparation and publica-
tion of this report were COL G. H. Hilt, CE, and COL John L. Cannon, CE.

Technical Director was Mr. F. R. Brown.
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CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI)

UNITS OF MEASUREMENT

U. 8. customary units of measurement used in this report can be con-

verted to metric {(8T) units as follows:

Multiply By

feet 0.30L8
miles (U. S. statute) 1.609344
square feet 0.0929030k
square miles (U. 8.

statute) 2.589988
acres Lohé. 856
acre-feet 1233.482
cubic feet per second 0.02831685
Btu (International Table) 1055.056
Fahrenheit degrees 5/9

To Obtain

metres
kilometres

sgquare metres

square kilometres
square metres

cubic metres

cubic metres per second
Joules

Celsius degrees or Kelvins¥

¥ To obtain Celsius () temperature readings from Fahrenheit (F) regd~—-

ings, use the following formula:

C = (5/9)(F - 32). To obtain Kelvin

(X) readings, use: X = (5/9)(F - 32) + 273.15.
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TEMPERATURE ANALYSIS AND SELECTIVE-WITHDRAWAL DESIGK STUDY
TALLAHALA CREEK LAKE, MISSISSIPPI

Mathematical Model Investigation

PART I: TINTRODUCTION

PurEose

1. The purpose of this study was to investigate the temperature
structure to be expected within the proposed Tallashala Creek Lake and to
determine a selective—withdrawal intake configuration that will allow

operation to satisfy downstream water-quality objectives.

Project Description

2. The Tallahala Dam will be located on the Tallahala Creek
approximately 13 miles¥® north of Laurel, Mississippi, ard will have a
drainage area of 152 sguare miles (Figure 1). An 8,000-ft-long earth-
fill dam will impound water for water supply, water-quality management,
and flood control. The lake formed by the dam will be approximately
8 miles long and will provide 128,360 acre-ft of storage at el 317.5,%*
which will be the top of the flcod control pocol. The storage allocation
will include 67,300 acre-ft for flood control, 36,800 acre-ft for water
supply, and 12,400 acre-ft for water-quality control. The top of the
conservation pool will be at el 306.5 and the bottom of the reservoir
will be at el 270.0. The surface area of the lake at the top of the con-
servation pool will be 4,845 acres. Releases from the lake will be made
through an outlet works with a 10-Tt-diam conduit in the dam and over gz

300-ft-long emergency spillway.

¥ A table of factors for converting U. S. customary units of measure-
ment to metric (SI) units is presented on page 3.
¥%  All elevations {el) cited herein are in feet referred to mean sea
Jevel. :



3. The outlet works will consist of an intake structure with
provisions for making selective-withdrawal and flood releases. The
selective-withdrawal releases will pass through two 10- by L.75-£t wet
wells, each of which will have two 3.0- by L4.0-ft intakes, one at
el 289.0 and one at el 298.0, with hydraulically operated sluice gates.
The two intakes =t el 298.0 will discharge into the sides of the wet
wells, and the twe at el 289.0 will discharge into the front faces. The
flows from each of the wet wells will be controlled by 2.0~ by 2.5~
sluice gates at el 272.0. The flows from the wet wells will discharge
into the flood contrel conduit Just downstream of the service gates.
Each wet well will pass 85 efs, and the combined capacity for both wet
wells will be 170 cfs.

Approach

. The study was accomplished with the use of a numerical simiia-
tion model. The approach invelved the selection of several study yvears
and simulation of lake operation for each of these years. Study years
selected had combinations of streamflow quantities and alr temperatures
that could create extreme conditions of thermal stratification. The
data required for the simulations were lake inflows and outflows, inflow
stream temperatures, meteorological data for each of the study vyears,
geometry of the lake, and geometry of the intake structure.

5. The heat transfer into and out of the lake was evaluated and
the heat was distributed within the lake. A heat budget was maintsined
throughout the simulation period. An objective temberature was speci-
fied for each simulation day, and an operating scheme was determined.
The operation scheme for any day was the combination of open ports that
minimized the difference between the objective downstream temperature
and the predicted release temperature. The output from the simulation
included a comparison between objective and release temperature in graph-
ical form throughout the simulation period as well as tabular summaries
for each day and plotted profiles of temperature within the lake at

specified times of the year. The numerical simulationr model was also



used to simulate the dissolved oxygen (D.0.) structure of Tallshala
Creek Lake. The purpose of these simulations was to evaluate the ef-
fects of reservoir cperation upon the D.0O. regime of the lake. A de-

seription of the simulations and the results of the simulations are pre-
sented in Appendix A of this report.



PART II: MODEL DESCRIPTION

6. The downstream release characteristics and the internal temper-
ature and D.0. structure for Tallahala Creek Lake were predicted using
a numerical simulation model. The model (WESTEX) used in conjunction
with this investigation was developed at the U. 8. Army Engineer Water-
ways Experiment Station (WES) based on the results of Clay and Fruh,1
Edinger and Geyer,2 Dzke and Harleman,3 and Bohan and Grace.Ll The D.O.
portion of the WESTEX mcdel is described in Appendix A.

T. The WESTEX model provides a procedure for examining the hal-
ance of thermal energy imposed on an impoundment. This energy balance
and lake hydrodynamic phenomena are used to map vertical profiles of
temperature in the time domain. The model includes computaticnal meth-
ods for simulating heat transfer at the air-water interface, heat advec-—
tion due to inflow and outflow, and the internal dispersion of thermal
energy. The model is conceptually based on the division of the impound-
ment into discrete horizontal layers. Fundamental assumpticns include

the following:

&. 1Isotherms are parallel to the water surface both laterally
and longitudinally.

b. The water in each discrete layer is isotropic and physi-
cally homogeneous.

Internal advection (between layers in the lake) and heatb
transfer cccur only in the wvertical direction.

[0

d. External advection {(inflow into and outflow from the lake)
occurs as & uniform horizontal distribution within each
layer.

e. Internal dispersion of thermal energy is accompliished by a

diffusion mechanism which combines the effects of molecu-
lar diffusion, turbulent diffusion, and thermal convection.
8. The surface heat exchange, internal mixing, inflow, and ocut-
flow processes are simulated separately and their effects are introduced
sequentially at daily intervals.
9. The WESTEX model employs an approach to the evaluation of
surface heat transfer that was developed by Edinger and Geyer.2 This

method formulates equilibrium temperatures and coefficients of surface



heat exchange. ZEquilibrium temperature is defined as that temperature
at which the net rate of heat exchange between the water surface and the
atmosphere is zero. The coefficient of surface heat exchange is the
rate at which the heat transfer process will occur. The equation de-

gcribing this relation is

H=X(E - 9) (1)

where

net rate of surface heat transfer, Btu/fte/day*

it

coefficient of surface heat exchange, Btu/fte/dayOF

equilibrium temperature, °F

@ = =N ™
I

surface temperature, °F

The computation of equilibrium temperature and heat exchange coefficient
is based solely on meteorological data as outlined by Edinger,
Duttweiler, and Geyer.5
| 10. The net heat exchange at the surface is composed of seven heat
exchange processes. Thege are the following:

a. BShortwave solar radiation.

EX

Reflected shortwave radiation.
c. Long-wave atmospheric radiation.
d. Reflected long-wave radiation.
e, Heat transfer due to conduction.
f. Back radiation from the water surface.
g. Heat loss due to evaporation.

For every day of meteorological data, the seven heat exchange terms can
be evaluated and the net heat exchange expressed in terms of an equi-
librium temperature and an exchange ccefficient.

11. A1l of the surface heat exchange processes, with the excep-
tion of shortwave radiation, affect only approximately the top few feet
of the lake. BShortwave radiation penetrates the water surface and in-
creases the temperature at greater depths. Based on laberatory investi-

gations, Dake and Harleman3 have suggested an exponential decay with

¥ For convenience, symbols and unusual abbreviations are listed and de—

fined in the Notation (Appendix C).



depth for describing the heat flux due to shortwave penetration,

12. The surface heat exchange concepts are implemented in the
WESTEX model by the expenential penetration of & percentage of the in-
coming shortwave radlation and the placement of the effect of all other
sources of surface heat exchange into the surface layer. This can be

expressed mathematically by the following two eguations

B, = K(E - 8) - (1-8)S (2)
—Azi
H, = (1 - B)Se (3)
where
H = rate of heat transfer into or out of surface layer,

Btu/ft2/day

B = percentage of incoming shortwave radiation absorbed in the
surface layer

5 = rate of total incoming shortwave radiation, Btu/ftg/day
H, = rate of heat absorbed in layer (i), Btu/ftg/day

e = natural logarithmic base (2.7183)

X = absorption ccefficient, £yt

z. = depth below surface, £t

13. The process of inflow into a lake is simulated in WESTEX by
the placement of inflow gquantity and quality at that layer where the
density of the lake corresponds most nearly to the density of the inflow.
Research efforts and physical model studies at WES have indicated that
entrainment-induced density currents can exist and flow upstream zlong
the surface into the turbulent mixing zone caused by the inflow. IEn-
trainment is implemented in the model by augmenting the inflow gquantity
with a volume from the surface layer. Characteristics of inflow and
entrained flow are averaged, and mixed values of density, temperature,
and other water-quality parameters are determined. The mixed density is
used to determine placement of the total quantity and mixed quality.
Simulation of the process of inflow displaces upward a volume equal to

the total inflow quantity. This upward displacement is reflected in the

10



model by an increase in the water surface. A corresponding decrease in
water surface occurs as a result of the outflow process.

14. The internal dispersion process is represented by an internal
mixing scheme based on a simple diffusion analogy. Internal mixing
transfers heat and other water-quality constituents between adjacent
layers. The magnitude of the transfer between two layers is a percent-
age of the total transfer required to completely mix the two layers.
This percentage is & mixing coefficient that is defined for every layer.
Data input ircludes values of the mixing coefficient at the top and at
the botitom of the lake. An exponential f£it between the two extreme
values is used to determine the appropriate coefficient at each layer.

15. The outflow component of the model incorporates the selective-
withdrawal techniques developed by Bohan and Grace.h Transcendental
equations defining the zero velocity limits of the withdrawal zone are
solved with a half-interval search method. With knowledge of the with-
drawal limits, the velocity profile due to ocutflow can be determined.
The fiow from each layer is then the product of the velocity in the
layer, the width of the layer, and the thickness of the layer. A flow-
weighted average is applied to water-quality profiles to determine the
value of the release content of each parameter for each time step.

16. The lake regulation algorithms have been developed to realis-
tically simulste the field operation of a selective-withdrawal system.
The selective-withdrawal system is assumed to be configured with an
arbitrary number of selective-withdrawal intakes located in each of two
wetl wells with a separate floodgate. Maximum flows and minimum flows
from each intake and from the floodgate must be specified. Also, the
maximum flow for the selective-withdrawal system is specified. The
algorithms attempt to numerically withdraw water st or near the objec~
tive temperature. Withdrawal will be from either one intake level, two
adjacent intake levels, and/or the flood control intake depending upon
the objective temperature, the temperature profile, the intake capaci-

ties, and the amount of flow to be released.

11



PART III: DEVELOPMENT AND ACQUISITION OF DATA

Selection of Study Years

17. TFor the selection of study years, statistical analyses cof
mean monthly streamflow and mean monthly dry bulb temperature were con-
ducted for the pericd of record 1948-1968 (Plate 1). Study years were
limited to this period due to lack of adequate meteorological data prior
to 1948 and lack of streamflow records after 1968. Only records from
March through October were considered in the selection of study years.
Experience has shown that this is the period in which density strati-
fication in the lake is affected by hydrology and meteorology. IEmphasis
was given to the characteristics of the spring months due to the partic-
ular importance of these months in fish reprcductive cycles.

18. Combinations of above average, average, and helow average
nydrologic and meteorclogic conditions were considered in the selection
of study years. The five years discussed below were seiected for the
analyagis of temperature at Tallshala Creek Lake.

a. 1954 - Below normal runoff occurred throughout the year.
Air temperatures were above normal in February, April,
and June through September. This condition would tend to
allow stratification to form early in the year and remain
well intc the fall.

|o

1957 - Very low flows occurred in the beginning of the
year and were accompanied by above ncormal air tempera-
tures. The summer period had below normal runoff with
average air temperatures; above normal runoff occurred
from September through December. BStratification would
tend to form early in the year and then decay early due
to the high flows in the fall.

1958 - The runoff was normal throughout the year, and the
air temperatures were below normal from January through
March and normal from April through November.

e

|

1961 - Well above normal runoff occurred from February
through April and in December with nesrly normal flows
for the remainder of the year. Air temperatures were
below normal in January and from April through October.
The high spring flows would inhibit the formation of
stratification, and the low air temperatures during the

12



summer wouid result in lower ‘than normal water tempera~
tures near the surface.

1664 - March, April, and December had above nermal runoff,
The remainder of the year had nearly normal flows. The
menthly air temperatures were nearly normal with the ex-
ception of April (above normal) and February and October
(below normal). The high flows in March and April would
tend to inhibit the formation of strong stratification,
while conditions throughout the remainder of the year
were nearly normal.

|

Data Reguirements

Meteorology

19. Meteorological data from the Meridian, Mississippi, Weather
Staticn were used for this study. The weather station is located
L0 miles north of the damsite. The required data consist of dry bulb
temperature, dew point temperature, wind speed, and cloud cover., These
data were obtained from the National Climatic Center in Asheville, North
Carolina. REight observations were furnished for each day. Daily aver-
age values were computed and used to determine equilibrium temperatures,
surface heat exchange coefficients, and daily average net solar radi-
ation quentities for the period of record.
Hydrology

20. Mean daily inflow and outflow quantities are shown in Plate 2.
Hydrologic routings were conducted by the U. S. Army Engineer Distriet,
Mobile {SAM), to determine these flows.
Lake geometry

21. The area-volume curve is shown in Plate 3. This curve and
other data deseribing the location and design of the intake structure
were furnished by SAM,

Stream temperature

22. Stream temperature records for the five study years were not
available, Some stream temperatures were measured between February and
August 1865 at Laurel, Mississippi, approximately 10 miles belocw the dam—
gsite. These temperatures were reported in the Pascagoula River Compre~

hensive Basin Study.6 These data were used in the development of a

13



regression equation relating equilibrium temperature, streamflow, and

observed stream temperature. The following regression model was used.

B = o+ ByQp t BBy BBy * BE )

vhere

0 = mean daily stream temperature, °F

t = Julian day

Q@ = mean daily streamflow, cfs

E = mean daily equilibrium temperature, °F
and o , B8 are regression ccefficients as follows:

o = 19.475

Bl = =0.0020

8, = 0.13595

83 = 0.123L

B, = 0.4095

This equation has a correlation coefficient of 0.685 and a standard error
of 2.21°F. The mean daily leke inflow temperatures (Plate &) for the
five study years were predicted using this equation.

Objective temperature

23. A least-squares analysis was used to fii a harmonic curve to
the predicted stream temperatures for the five study years. The curve
represents the average natural stream temperature variation to be ex-

pected during a year. The following regression model was used:

8, = A sin (Bt + C) + D (5}
The coefficient B is a unit conversion from days to radians. The co-
efficients A , € , and D were determined by solution of Lquation 5

with the Newton-Raphson technique and were computed to be the following:

A = -13.83k

B = 1.721 x 1072
C = 1.333

D = 65.L4

1k



Equation 5 was used to define the downstream temperature cbiective.
o, The entire record of predicted downstream temperatures was
scanned for the maximum stream temperature to be expected for each day
of the year. These 365 maximum temperatures were then fit to the same
regression model as indicated in Eguation 5. A similar sine curve was
determined for the minimum temperatures to be expected each day of the
year over the pericd of record. The coefficients for these curves are

as follows:

Coefficient Maximum Minimum
A -11.9k -15.66
B 1.721 % 1072 1.721 x 1077
C 1.325 1.325
D T0.63 60.25

These curves of maximum and minimum predicted downstream temperatures
give an indication of the variation of natural stream temperatures from

the single harmonic curve that is used as an objective temperature.

Model Calibration

25, As has been discussed previously, the WESTEX model requires
the determination of coefficients of surface heat exchange distribution
and internal mixing. For Tallahala Creek Lake these ccoefficients were
determined by conducting simulations with Tallahala hydrologic and mete-
orologic data. Coefficients were adjusted and simulation was repeated
until the predicted temperature profiles corresponded in shape and range
to those observed in nearby Okatibee Lake. Okatibee Lake is located
just north of Meridian, Mississippi. It is similar in gsize, depth, znd
flow magnitudes to Tallahala Creek Lake. Profiles of temperature and
D.0. in Okatibee Lake were obtained from SAM (Plate 5). Isotherms pre-
diched for Tallshala Creek Lake (Plate 8) compare favorably with Okatibee

data. The following coefficients were determined from the analysis:

0.6

B
A= 0.2

15



1
G, = 0.3
where
B = percentage of incoming shortwave radiation absorbed in the
surface layer
A = absorption coefficient, £yt
o, = mixing coefficient at surface
o, = mixing coefficient at bottom

Since data did not exist {to accurately determine the amount of entrain-
ment Induced by Tallahala Creek Lake inflows, simulations were conducted
assuming no entrainment and entrainment of a volume equal to the volume
of infiow. The simulations indicated that the effect of entrainment on
the predicted thermal profiles and predicted release temperatures were
negiigible, and no entraimment by inflow was assumed for all subsequent
simulations.

26. As mentioned previously, two inlets in the proposed intake
structure will discharge intc the sides of the wet wells. A previous
physical hydraulic model studyT on the cutlet works for New Hope Res-
erveir (now designated B. Everett Jordan Reservoir) conducted at WES
had indicated that zide inlets could have different selective~withdrawal
characteristics compared with inlets on the front face of the intake
structure. TFor the same discharge conditions, the inlets located on the
upstream face of the New Hope intake structure were approximately twice
as effective in withdrawing water from sbhove the density interface as
were those located on the sides. For the Tallahala intake structure it
was thought that the two proposed side inlets would not have different
gelective-withdrawsl characteristics from front facing inlets. The New
Hope intake structure was recessed back into the earth-fill dam such
that the fill caused shallow depths at the side inlets. Also, the loecal
topography at New Hope caused restricted access of flow to the side in-
lets in the structure. The combination of these two effects was be-
lieved to be responsible for the different selective~withdrawal charasc-—

teristics of the side inlets. The intake structure at Tallahala Creeck

16



Lake extends Tarther into the reservoir, and site conditions are not re-
strictive compared with the New Hope structure. In addition, there is a
significant difference in the discharges toc be released through the
Tallahala and New Hope structures. Discharges tested in the New Hope
study ranged from 300 to 2700 cfs whereas the selective-withdrawal
capacity of the Tallahsla structure is 175 cfs. Therefore, for this
study, the selective-withdrawal technique in the WESTEX model was as-

sumed to apply equally to side or front facing inlets.

17



PART IV: SIMULATIONS

27. TFour configurations were used in the analysis cf the location
and operatiocn of the selective-withdrawal intakes. Three of the config-
urations have selective-withdrawal capabilities. The fourth configura-
tion allows flocdgate releases only.

28. The capacity of the selective-withdrawal system was estab-
lished such that the system would be large enocugh to pass most flows.
Outflow requirements larger than the selective-withdrawal capacity must
be satisfied by operation of the floodgates. Plate 6 shows an outflow-
exceedance curve that was determined from a statistical anaiysis of
daily outflow requirements from April to September for all of the study
yvears. The exceedance curve shows that for possible selective-withdrawal
capacities above azbout 130 ¢fs, even & large increase in capacity will
not significantly increase the percentage of flows which can be con-
trolled gelectively. For Tallahala simulations, the selective~withdrawal
gystem capacity was established by SAM to be 170 cfs. This capacity al-
lows selective control of 85 percent of the flows for the study yesrs.
Thus, operation of the floodgate is reguired for 15 percent of the re-
lease flows from April to September for the study years.

29. The selective-withdrawal system was simulated as being con-
figured with two wet wells each containing two intakes. While it is
hydraulically possible to release flow through two intakes of the same
wet well, this practice 1s not recommended for it may result in unequal
flow distribution from the two intakes and ineffective blending as well
as induce unstable hydraulic flow conditions. If blending of flows is
required to meet a temperature objective, the model will use one intake
location from each wet well.

30. The first intake configuration (type I) considered consisted
of two wet wells and a floodgate. Fach wet well contained selective-
withdrawal intakes with center lines at el 298.0 and 289.0. FEach intake
had a capacity of 85 cfs. The flood-release conduit was a 10-ft-diam
circular ceonduit with invert at el 272.0. Operation of this system al-

lowed simultaneous releages from the ficodgate and selective-withdrawsl

18



intakes, Blending of floodgate releases with selectlve-withdrawal re-
leases was useg to achieve g downstrean temperature objective during
times when cold water wasg heeded. Thig blending of floodgate releases
night be accomplished through the use of a low~level outlet within the
Tleodgate.

31. The Second configuration (type IT) considered wag Proposed
by SAM (see paragraph 3), Tt consisted of two wet wells and a Tloodgate.

el 298.0 ang 289.0. Each intake had g capacity of 85 cfs ang a minimum
controllable flow of 2 c¢fs. The flood-release conduit wag g 10-ft-diam
circular conduit with invert at el 272,0. Operation or this systenm per~
mitted Tloodgate release only when the required outflow Was greater than
the capacity of the selective-withdrawal Systen.

32. The thirg configuration {(type ITI) considered consisted of

two wet wells and a floodgate. One wet well containeqd selective~

2 cfs. The flood-release conduit wag g 10-ft-diagm cireular conduit with

invert at e] 272.0. Operation of this systen Permitted blending of

33. The Tourth coenfiguration (type Iv) considered consisted of g
floodgate only. "The flood-releage conduit isg g 10-ft-diam circular con—
duit with invert at el 272.0. Cperation of this systenm required flood-

gate relegseg for al11 outflows. The Purpose of considering a1 releases

19
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APPENDIX A: DISSOLVED OXYGEN

1. The dissolved oxygen (D.0.) content of the reservoir can be
defined as the sources minus the sinks. The sources of D.0. in impound=-
ments include photosynthesis in the euphotic zone, atmospheric reaera-
tion, and reservoir inflows. D.0. sinks include respiration of plants
and animals, oxygen demand of reservoir inflows, benthie and detritus
oxygen demands, and D.0. in reservoir outflows.

2, Observations of actual D.C. profiles in various lakes by
Bella,B* Carrcll and Fruh,9 and Fontane and BohanlO indicate that a por-
tion of the lake below the surface can experience temperature-dependent
gaturated D.0. conditions. TFor depths below this saturation zone, the
net effect of all D.C. sources and sinks can be represented mathemati-
cally by & total D.0. depletion term.

3. The WESTEX model contains a simple method for routing D.O.

9 and Fontane and Bohan.lo

based on the work of Bella,8 Carroll and Fruh,
D.0. is routed in a manner similar to that used for temperature. The
processes simulated in the model are advection, surface saturation,
internal dispersion, and oxygen depletion. The D.O. routing portion of
the WESTEX model is used to evaluate the relative effects of structural
design and project coperation on the D.0. budget of the lake. The re—
sults should not be interpreted as predictions of sbsolute day-to-day
D.0. concentrations. As indicated by Bella,8 the resultant D.0. pre-
dictions do not account for short-term D.0. variations (for example, due

to an algael bloom), but rather reflect the progressive D.(. changes that

oceur with depth over the entire stratification pericd.

Advection and Internal Dispersion

4., The D.0. content of the inflow and the outflow is evaluated and

used to adjust profiles within the lake. An internal mixing mechanism,

¥ Raised numersals refer to similarly numbered items in the References
at the end of the main text.
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based on an analogy of the thermal diffusion process, is applied to the
D.0. preofile. This internal mixing mechanism simulates the movement of

D.0. from the upper to the lower layers of the lake.

Oxygen Depletion

5. Total oxygen depletion rates are determined by plotting D.O.
versus time for a given elevation. This depletion rate is & function of
all the processes, hydrodynamic and oxygen-consuming, that oceur in the
reservoir. The WESTEX model accounts for the hydrodynamic processes;
therefore, the value of the depletion rate used in the WESTEX model is
selected to represent only the oxygen-~consuming processes. The de-
pletion rate used in the model is selected such that the D.C. profiles
produced by the model will yield total depletion rates which are
reasonable in terms of observed data on similar reserveirs.

6. Within the WESTEX model, the depleticn rate for D.0., a con-
stant wvalue throughout the entire simulation period, is applied each

daily time step to every layer below the surface saturstion =zone.

Surface Ssturation

T. As indicated previously., observed D.0. profile data have shown
the existence of & surface gaturation zone. Many factors influence the
characteristics of this zone. Considerable analysis of many lake pro-
files is needed for a general determination of saturation zone thickness
and percentage of D.0. saturation within this zone. The values used for
a given project study should be based on observed data from similar

lakes.

Dissolved Oxygen Data

8. Data on the D.0. content of flow in Tallshala Creeck were avail-
able from the preimpoundment studyll of the project. Based on these

data, two regression equations were develcoped to predict the D.O.
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content of the inflow to Tallahals Creek Lake:

— o}

DO, rioy = —2-88 + 1.1k D.0. . for T > T7°C

and
— Q
O'inflow = 0.90 x D.O.Sat for T < T°C
where
D'O'inflow = inflow D.0. content, mg/%
T = stream temperature, °C
D.0. = temperature-dependent saturated D.O. content, mg/8

sat
The saturated D.0O. content was computed by

_ 1
"sat ~ 0.0677 + 0,002087

D.O

Daily values of the computed D.0. content of the inflow are shown in
Plate Al for each of the five study years. The net D.O. contributed by
inflow is the inflowing D.0. content decreased by an amount which repre-
sents D.0. depletion due to the travel time within the lake required for
the inflow current to reach the dam. The travel time for an inflow cur—
rent to reach the dam was not known for Tallahals Creek Lake. TFor these
simulations, the depletion of D.0O. due to travel time was neglected and
it was assumed that the net D.0. contributed by inflow was equal to the
computed inflow D.O. content.

9. Observed thermal and D.0. profile data were available for four
Mississippi lakes: Okatibee Lake (1969-71), Enid Lake (1971-T2), Sardis
Lake (1968-T1), and Grenada Lake (1970-T2). Analysis of these profile
data yielded a range of values for total depletion rates, surface satura~

tion percentages, and depths to which saturation extends.

Dissolved Oxygen Simulations

10. Simulations were conducted to evaluate D.0. conditions within
and downstream of Tallshala Creek Lake. The intake configuration used

was the type II, as discussed previously. Five D.0. conditions were
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Table Al

Surface
Depletion Saturation Saturation

Condition Rate percent Depth

1 0.05 100 1°c%

2 0.12 1C0 1°C

3 0.12 100 5 ft

L 0.12 80 5 ft

5 0.20 100 1 ft
%

1°C is the depth at which the temperature is 1°C less than the sur-

face temperature.
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